

Accelerometer-Measured Physical Activity Improves Predictive Validity of Fried Frailty Phenotype for All-Cause and Cardiovascular Disease Mortality: UK Biobank

Lingsong Kong^{1,2}, Dae Hyun Kim^{3,4,5}, Chi Hyun Lee⁶, Cassandra N. Spracklen⁷, Susan R. Sturgeon⁷, John R. Sirard¹, Amanda E. Paluch^{1,8}
¹ Department of Kinesiology, University of Massachusetts Amherst; ² Stanford Deep Data Research Center, Palo Alto, CA, USA; ³ Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; ⁴ Beth Israel Deaconess Medical Center, Boston, MA, USA; ⁵ Harvard Medical School, Boston, MA, USA; ⁶ Department of Applied Statistics, Yonsei University, Seoul, South Korea; ⁷ Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA; ⁸ Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA

Stanford Deep Data Research Center

INTRODUCTION

- Frailty is a significant health challenge among older adults, increasing vulnerability to adverse health outcomes such as cardiovascular disease (CVD), falls, disability, and mortality.¹
- Fried Frailty Phenotype (FFP) is a widely used frailty measure defined by five criteria: unintentional weight loss, exhaustion, slowness, weakness, and low physical activity (PA).²
- Low PA is typically assessed by self-report, which is less accurate than accelerometer-based measures - particularly in older adults.³
- This study examined whether replacing self-reported PA with accelerometer-measured PA improves the predictive validity of the FFP for all-cause and CVD mortality.

HYPOTHESES

- Frail and pre-frail older adults have higher risks of all-cause and CVD mortality than robust individuals.
- The FFP incorporating accelerometer-measured PA shows stronger associations with mortality than the FFP incorporating self-reported PA.

METHODS

- Study Design:** Prospective cohort study.
- Participants:** 38,429 UK Biobank participants aged ≥ 60 years.⁴
- Accelerometer Assessment:**
 - Axivity AX3 on the dominant wrist for 7 days, 24 hours/day (Figure 1).⁴
 - <3 valid wear days or lacking hourly acceleration data were excluded.⁴
- Frailty Assessment:** Frailty was defined using the 5 modified FFP criteria adapted for UK Biobank (Figure 2).⁵ Frailty status was classified as robust (0 criteria), pre-frail (1–2), or frail (≥ 3).⁵
- FFP-Mod:** Low PA assessed using self-reported PA.⁵
- FFP-MVPA:** Low PA defined as the lowest quintile of time spent at acceleration >125 mg based on acceleration intensity distribution.

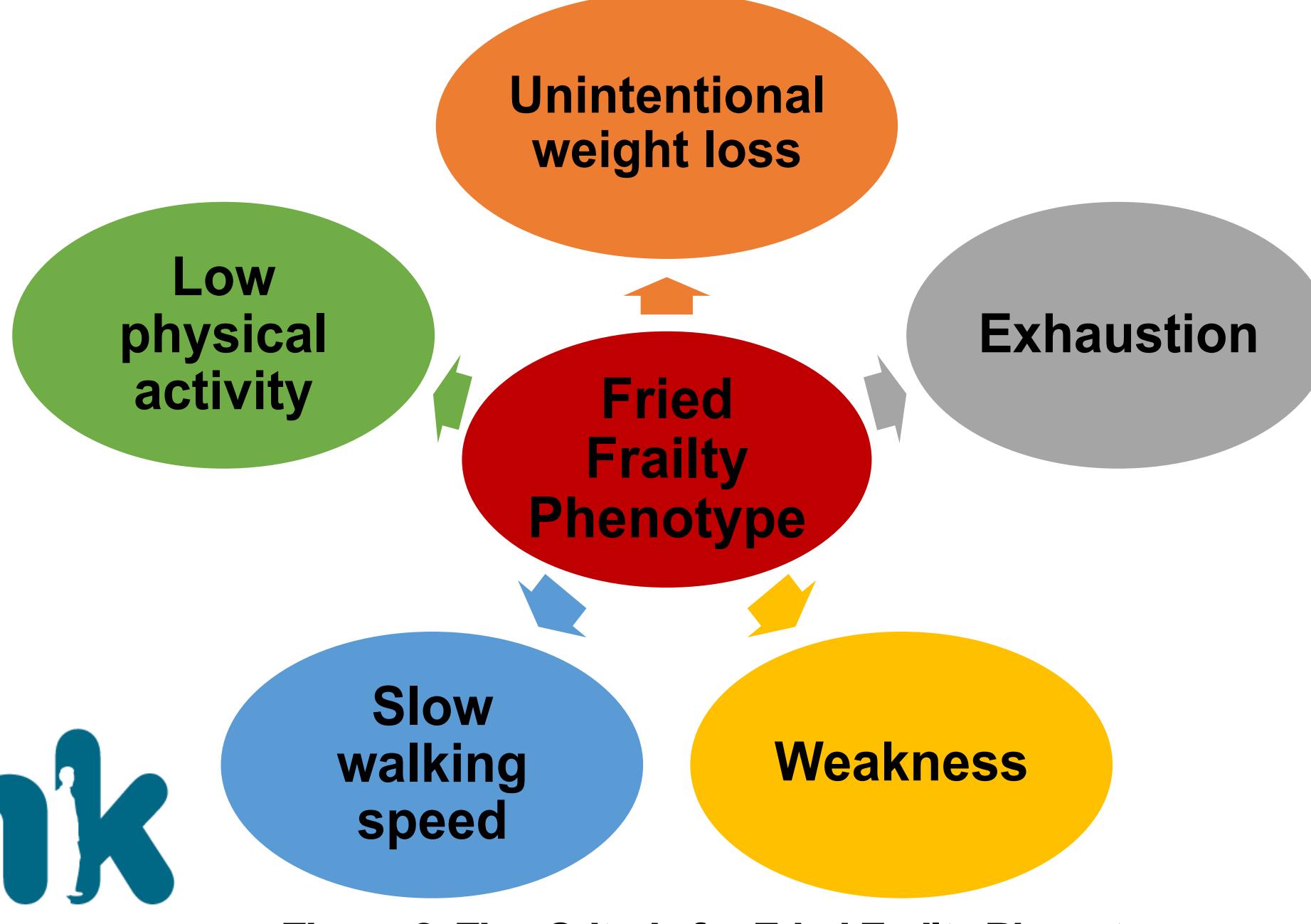
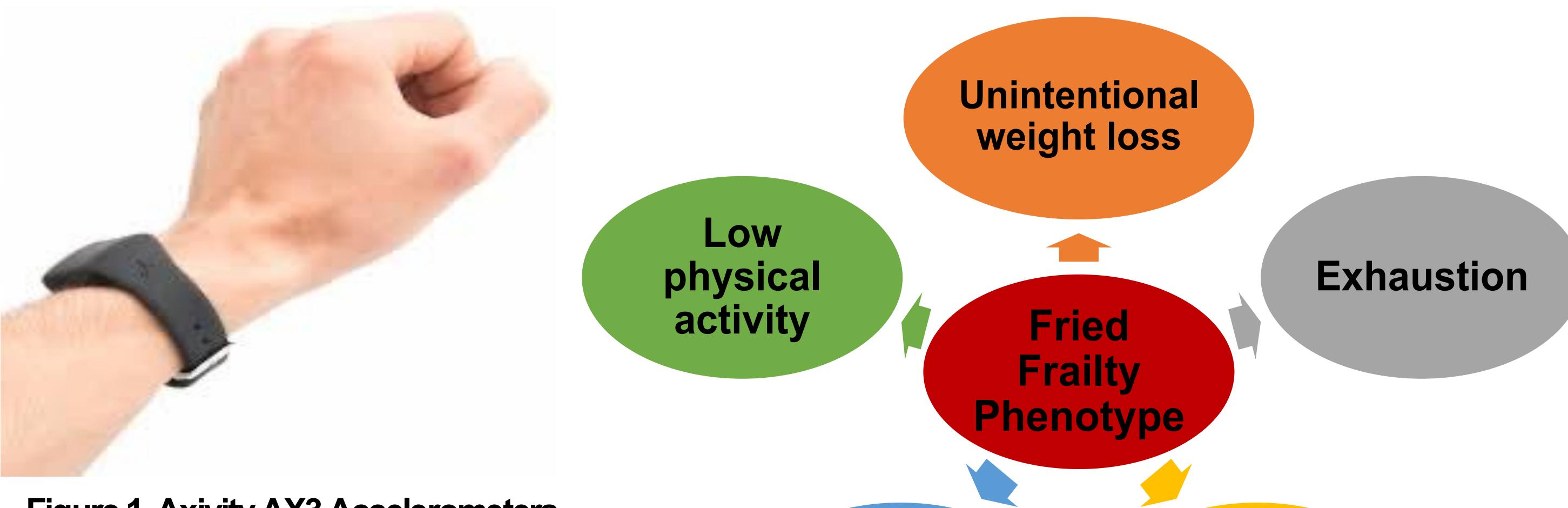
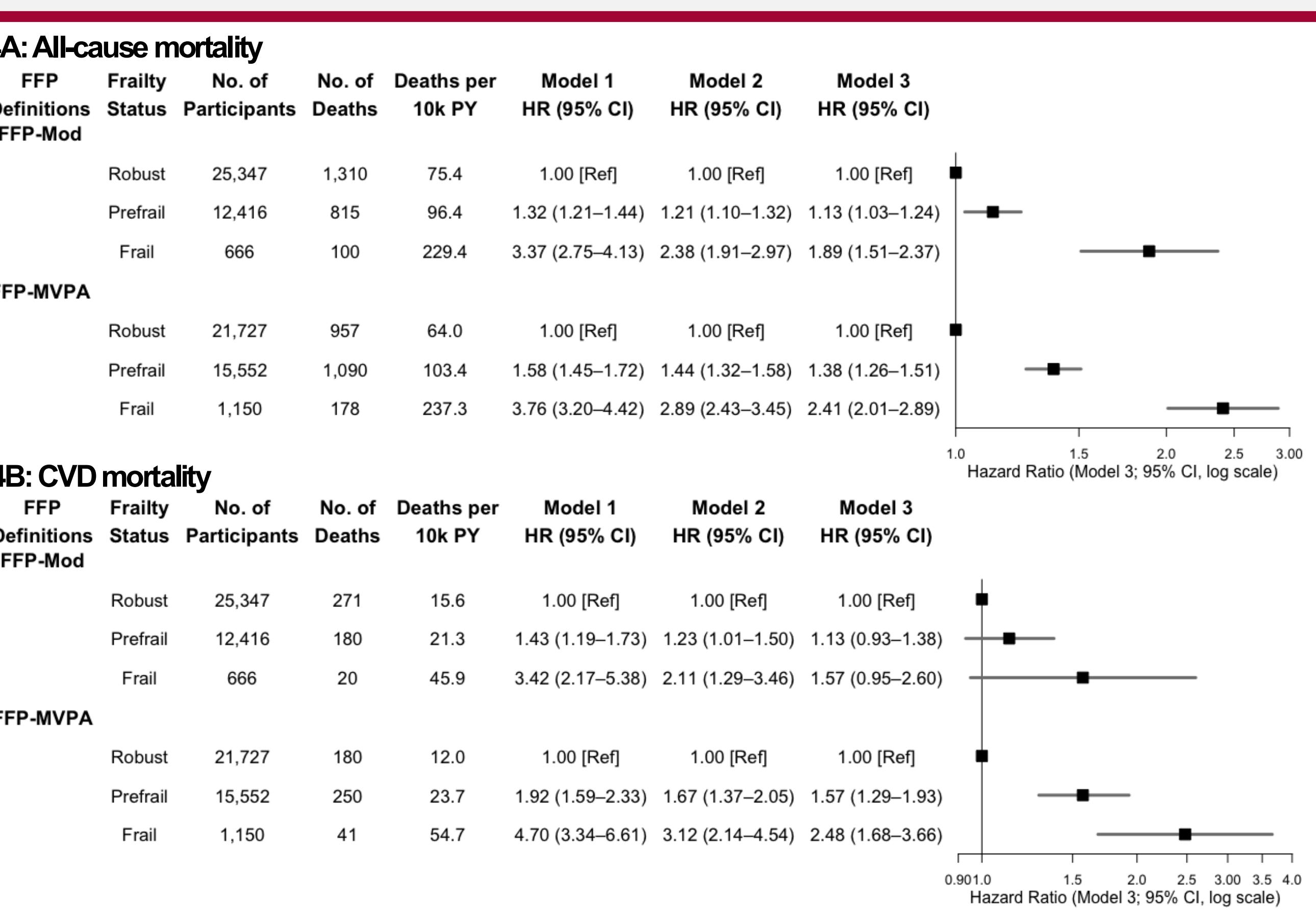
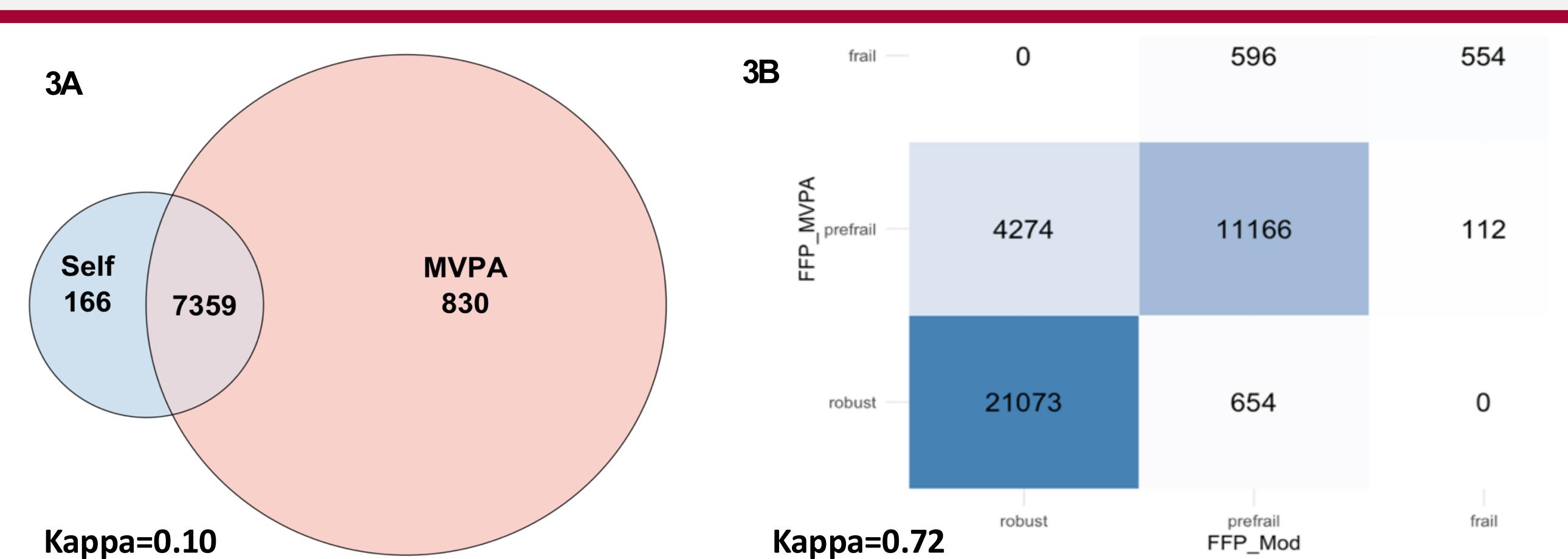





Table 1: Participant Characteristics by Modified Fried Frailty Phenotype

Characteristics	Overall (N=38,429)	Robust (N=25,347)	Pre-frail (N=12,416)	Frail (N=666)	p
Age (years)	63.8 \pm 2.8	63.8 \pm 2.8	63.9 \pm 2.8	64.0 \pm 2.8	<0.01 ^b
Sex					<0.01
Female	19,874 (52%)	12,528 (49%)	6,916 (56%)	430 (65%)	
Male	18,555 (48%)	12,819 (51%)	5,500 (44%)	236 (35%)	
Weight status (BMI)					<0.01
Normal weight	13,576 (35%)	9,986 (39%)	3,499 (28%)	91 (14%)	
Overweight	17,144 (45%)	11,605 (46%)	5,348 (43%)	191 (29%)	
Obese	7,539 (20%)	3,646 (14%)	3,516 (28%)	377 (57%)	
Race					<0.01
White	36,089 (94%)	23,946 (94%)	11,539 (93%)	604 (91%)	
Nonwhite	2,340 (6%)	1,401 (6%)	877 (7%)	62 (9%)	
Education qualification					<0.01
College	14,321 (37%)	10,022 (40%)	4,139 (33%)	160 (24%)	
Secondary	13,338 (35%)	8,691 (34%)	4,403 (35%)	244 (37%)	
Professional	5,137 (13%)	3,322 (13%)	1,735 (14%)	80 (12%)	
Smoke status					<0.01
Never	19,834 (52%)	13,381 (53%)	6,163 (50%)	290 (44%)	
Past	16,491 (43%)	10,701 (42%)	5,467 (44%)	323 (48%)	
Current	1,993 (5.2%)	1,199 (4.7%)	745 (6.0%)	49 (7.4%)	
Alcohol consumption					<0.01
Three	20,301 (53%)	14,381 (57%)	5,750 (46%)	170 (26%)	
One	15,825 (41%)	9,722 (38%)	5,716 (46%)	387 (58%)	
Never	2,287 (6%)	1,236 (4.9%)	945 (7.6%)	106 (16%)	
Self-rated health status					<0.01
Good	31,636 (82%)	22,370 (88%)	9,083 (73%)	183 (27%)	
Fair	6,721 (17%)	2,944 (12%)	3,300 (27%)	477 (72%)	
Mean acceleration (mg)	25.7 \pm 7.2	26.5 \pm 7.1	24.6 \pm 7.1	20.0 \pm 5.9	<0.01
Time in MVPA (min/day)	62.0 \pm 32.6	65.6 \pm 32.4	56.1 \pm 31.7	35.3 \pm 23.3	<0.01

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; FFP-Mod, modified Fried Frailty Phenotype with questionnaire determined low physical activity; FFP-MVPA, Fried Frailty Phenotype with moderate-to-vigorous physical activity time determined low physical activity; HR, hazard ratio; PY, person-years; Ref, reference.
Model 1 adjusted for age and sex. Model 2 adjusted for Model 1 covariates + race, body mass index (BMI), education, smoking, alcohol intake, and diet. Model 3 adjusted for Model 2 covariates + self-rated health.

METHODS (CONT'D)

- Mortality Ascertainment:**
 - Death records were obtained from the National Health Service Information Centre (England and Wales) and the National Health Service Central Register (Scotland).⁴
 - Participants were followed through November 2021.
- Statistical Analyses:**
 - Agreement of FFP definitions was assessed using Cohen's kappa.
 - Cox models were used to examine and compare associations of FFP-MVPA and FFP-Mod with all-cause and CVD mortality.

RESULTS

- Over a median 6.95 years, 2,225 all-cause and 471 CVD deaths occurred. FFP-Mod and FFP-MVPA classified 666 and 1,150 participants as frail.
- Compared to robust individuals, frail individuals had 1.89 (1.51–2.37) times risk of all-cause mortality based on FFP-Mod and 2.41 (2.01–2.89) times risk based on FFP-MVPA. Pre-frail individuals had 1.13 (1.03–1.24) times risk based on FFP-Mod and 1.38 (1.26–1.51) based on FFP-MVPA, with non-overlapping CIs between these estimates (Figure 4A).
- Significant associations with CVD mortality were observed only for FFP-MVPA, with frail individuals having 2.48 (1.68–3.66) times risk and prefrail individuals having 1.57 (1.29–1.93) times risk; no significant associations were observed for FFP-Mod (Figure 4B).

CONCLUSIONS

- Integrating accelerometer-derived PA into frailty assessment enhances the predictive validity of FFP for mortality.
- Accelerometer-based FFP definition demonstrated improved sensitivity in identifying prefrail individuals at risk of all-cause mortality and better ability to detect CVD mortality risk.
- Our findings highlight the clinical relevance of integrating accelerometer metrics into frailty assessments to facilitate earlier identification of health decline in older adults.

REFERENCES

- Buckinx F, Rolland Y, Reginster JY, Ricour C, Petermans J, Bruyère O. Burden of frailty in the elderly population: perspectives for a public health challenge. *Arch Public Health*. 2015;73(1):19.
- Fried LP, Tangen CM, Walston J, et al. Frailty in Older Adults: Evidence for a Phenotype. *J Gerontol Ser A*. 2001;56(3):M146-M157.
- Sabia S, van Hees VT, Shipley MJ, et al. Association Between Questionnaire- and Accelerometer-Assessed Physical Activity: The Role of Sociodemographic Factors. *Am J Epidemiol*. 2014;179(6):781-790.
- Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS Med*. 2015;12(3):e1001779.
- Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK Biobank participants. *Lancet Public Health*. 2018;3(7):e323-e332.

Corresponding Author Email: kongls@stanford.edu